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Abstract
We study the quantum forces that act between two nearby conductors due to
electronic tunnelling. We derive an expression for these forces by calculating
the flux of momentum arising from the overlap of evanescent electronic
fields. Our result is written in terms of the electronic reflection amplitudes
of the conductors and it has the same structure as Lifshitz’s formula for the
electromagnetically mediated Casimir forces. We evaluate the tunnelling force
between two semiinfinite conductors and between two thin films separated by
an insulating gap. We discuss some applications of our results.

PACS numbers: 42.50.Lc, 03.75.Lm, 11.10.Ef

1. Introduction

The increased accuracy of experimental studies [1–5] of the Casimir force [6] between
conducting bodies has opened the possibility of exploring new ideas related to the
understanding and control of quantum vacuum fluctuations. Research projects on Casimir
torques [7], or the possible applications of the Casimir forces in the development of micro and
nano-electromechanical devices are now under way [8–10]. Understanding Casimir forces
[11] has become fundamental in the investigation of additional long-range forces [12] and
deviations [13] of Newton’s gravitational law at micrometre distances [14, 15], related to the
search for extra dimensions in spacetime [16]. Recent experiments employing atomic force
microscopes have taken advantage of the isoelectronic/isotopic [17] effect to explore gravity
corrections at distances as small as 1–4 nm [18], so that understanding all the forces acting at
ultrashort distances has acquired a paramount importance.

The usual Casimir effect may be understood as a force due to the quantum nature of the
electromagnetic radiation. In this paper, we study another source of quantum forces, namely,
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the tunnel effect. Particles that tunnel across a barrier separating two materials transport
momentum and therefore produce forces. Since quantum tunnelling arises from evanescent
electronic fields, this force has similarities to the contributions of evanescent electromagnetic
waves to the standard Casimir force.

In this paper, we concentrate our attention on conduction electrons in conductors, i.e.,
on massive non-relativistic Fermions. We derive the tunnelling force by calculating the flux
of momentum between two regions delimited by an arbitrary potential V (x). We express the
momentum flux in terms of Green’s function of the system, which we evaluate by means of
a scattering method involving amplitude reflection coefficients [19, 20]. This method yields
an expression for the tunnelling force with a structure that is essentially identical to Lifshitz’s
formula [21] and which has not been uncovered by previous related calculations [22, 23]. We
first perform the calculation for a one-dimensional system. We then extend the calculation
to the three-dimensional case. Finally, we evaluate the tunnelling force for a configuration
consisting of two semiinfinite or two thin metallic slabs separated by a thin insulating gap
and we discuss some applications of our results. Our calculations are performed for model
conductors in which free, independent electrons are confined by simple potential barriers.
Our neglect of crystalline structure and many-body interactions might render our results
quantitatively inaccurate, especially at distances comparable to an atomic size, though we
believe they should be qualitatively correct. Our calculation shows that although electronic
originated forces are due to the interchange of massive real Fermions instead of massless
virtual Bosons, they may be calculated in a way that parallels closely the calculation of the
usual Casimir force in terms of reflection amplitudes.

2. One-dimensional systems

The dynamical equation for the wavefunctions of an electronic system may be derived from a
Lagrangian density [24],

L = h̄2

2m
|ψ,z|2 + V |ψ |2 +

ih̄

2
(ψψ∗

,t − ψ∗ψ,t ) (1)

for which Euler–Lagrange’s equations yield Schrödinger’s equation,

∂t

∂L
∂(ψ∗

,t )
+ ∂z

∂L
∂(ψ∗

,z)
− ∂L

∂ψ∗ = ih̄ψ,t +
h̄2

2m
ψ,z,z − V ψ = 0. (2)

The field carries mechanical properties such as a momentum flux [25]:

T z
z = ∂L

∂ψ∗
,z

ψ∗
,z +

∂L
∂ψ,z

ψ,z − L = h̄2

2m
|ψ,z|2 − V |ψ |2 − ih̄

2
(ψψ∗

,t − ψ∗ψ,t ). (3)

Consider now an eigenstate ψn of the Schrödinger Hamiltonian Ĥ = −(h̄2/2m)∂2
z + V̂

corresponding to an energy En. From equation (3), its contribution to the momentum flux is

T z
z = h̄2

2m
|∂zψn|2 + (En − V )|ψn|2. (4)

Within a region V in which V (z) may be taken as a constant, we can write En −V = h̄2k2
n

/
2m,

i.e., the kinetic energy of particles with wavenumber k within V . We now sum the contributions
(4) over all the occupied orbitals,

T z
z (z) = h̄2

2m

∑
n

∫
dEδ(E − En)f (E)[k2|ψn(z)|2 + |∂zψn(z)|2], (5)
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where f (En) is the occupation number of orbital n, given in equilibrium by the Fermi–Dirac
distribution function, and k2 = 2m(E − V )/h̄2. The energy integration and Dirac’s δ allow
us to write T z

z in terms of the Green’s function of the system,

GE(z, z′) = 〈z|(E − Ĥ )−1|z′〉 =
∑

n

ψn(z)ψ
∗
n (z′)

E − En

, (6)

employing the relation Im(E+ − En)
−1 = −πδ(E − En), where E+ = E + iη with E and

η → 0+ real. Substituting this latter relation in (5) and employing (6) we obtain

T z
z (z) = − h̄2

2πm
Im

∫
dE[k2GE+(z, z′) + ∂z∂z′GE+(z, z′)]z′→zf (E). (7)

Notice that equation (7) may be interpreted as

T z
z (z) =

∫
dEρ

ef

E f (E)(h̄k)

(
h̄k

m

)
, (8)

where ±h̄k is the momentum of a particle which moves with velocity ±h̄k/m, thus contributing
the amount (h̄k)h̄k/m to the momentum flux, and

ρ
ef

E (z) = − 1

2π
Im

[
GE+(z, z′) +

1

k2
∂z∂z′GE+(z, z′)

]
z′→z

(9)

plays the role of an effective local density of states.
We now assume that V has a width L and is bounded on both sides by arbitrary

potentials, and we evaluate Green’s function following a scattering approach [19, 20].
Within V , the solution of (E − Ĥ )GE(z, z′) = δ(z − z′) may be written as GE(z, z′) =
(2m/h̄2)ψL(zL)ψR(zR)/W , where ψL and ψR are the two solutions of the Schrödinger-like
homogeneous equation (E − Ĥ )ψ = 0 that satisfy the boundary conditions on the left and
the right side of the system respectively, W = ψLψR,z − ψL,zψR is their Wronskian, and zL

and zR are the smallest and the largest among z and z′. We write ψL(z) = e−ikzL + r1 eikzL and
ψR(z) = eik(zR−L) + r2 e−ik(zR−L), where r1 and r2 are the reflection amplitudes for particles
impinging on the left and right boundaries of V , which we assume at z = 0 and z = L, and
we obtain

GE(z, z′) = 2m

h̄2

(e−ikzL + r1 eikzL)(eik(zR−L) + r2 e−ik(zR−L))

2ik e−ikL(1 − r1r2 e2ikL)
, (10)

which together with equation (7) yields the momentum flowing within V ,

T z
z = 1

π
Re

∫
dE k

1 + r1r2 e2ikL

1 − r1r2 e2ikL
f (E) = h̄2

πm
Re

∫
dk k2 1 + r1r2 e2ikL

1 − r1r2 e2ikL
f (E), (11)

where we used E = h̄2k2/2m + V . As expected in an equilibrium situation, T z
z is independent

of z within V .

3. Three-dimensional systems

The generalization of the results derived above to the three-dimensional case is straightforward
for systems which are translationally invariant along a symmetry plane, say xy. In that case,
the parallel wave vector �Q = (Qx,Qy) is a conserved quantity, and for each �Q the problem
is identical to the 1D case. Thus, we only have to sum equation (11) over the allowed
wavevectors,

T z
z = h̄2

4π3m
Re

∫
d2Q

∫
dk k2 1 + r1r2 e2ikL

1 − r1r2 e2ikL
f (E), (12)
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where we introduced the number Ad2Q/(2π)2 of wavevectors within a region d2Q of
reciprocal space by applying Born–von Karman boundary conditions in a system with total
area A → ∞, and we introduced the momentum flux density T z

z = T z
z

/
A. Note that −T z

z

coincides with the zz component of the stress tensor as defined in elasticity theory.
We remark that the structure of equation (12) is essentially identical to Lifshitz’s formula

and the procedure followed resembles closely the scattering approach [19, 20] to the Casimir
effect. The main differences are that the electromagnetic field has two independent transverse
polarizations whose contributions would have to be summed over, and that the speed of light is
a constant c, while the speed of electrons is proportional to the wavevector, i.e., the dispersion
relation between electrons and photons is different, and consequently, there is an extra power
of h̄ in equation (12). Another difference is that f (E) is a Fermi–Dirac instead of a Bose–
Einstein distribution and that the zero-point contribution is missing, as virtual pair production
would be irrelevant for the low energy applications we study below.

As r1 and r2 are independent of �Q for scalar fields, the first integral in equation (12) may
be performed immediately. At zero temperature we obtain

T z
z = 1

π2
Re

∫
dk

(
KF − h̄2

2m
k2

)
k2 1 + r1r2 e2ikL

1 − r1r2 e2ikL
, (13)

where the integration region includes all states below the Fermi level, whose kinetic energy
within V is KF, and for which we took f (E) = 2, including the spin degeneracy.

4. Applications

4.1. One semiinfinite metal

Within the bulk of a semiinfinite metal the electrons are reflected by the surface potential
barrier on one side, while there is no barrier on the other side. Thus, the pressure p with which
the electrons push the surface of the metal may be obtained by setting r1 = 0 in equation (13).
The result is simply

p = T z
z = 1

π2

∫ kF

0
dk

(
EF − h̄2k2

2m

)
k2 = 2

5
nEF, (14)

where h̄kF is the Fermi momentum, EF = KF (within the metal) is the Fermi energy, and
n = k3

F

/
3π2 is the electronic density. As could have been expected, this result coincides with

the well-known pressure of a degenerate fermion gas [26].

4.2. Two semiinfinite metals

We consider now two identical semiinfinite metals separated by vacuum. The force F/A
per unit area between both metals may be obtained from the momentum flux (13) within the
vacuum region, where the wavefunction of all the occupied states are evanescent, and it may
be written as

F

A
= −2 Im

h̄2

2mπ2

∫ κF

κ0

dκ
(
κ2

F − κ2
)
κ2 1

ζ − 1
, (15)

where ζ−1 = r2 e−2κL, and we wrote the wavenumber k = iκ in terms of the decay constant
κ . The integration limits in (15) are the decay constants for electrons at the bottom of the
conduction band, κ0 = √

[2m(W + EF)/h̄
2], and at the Fermi level κF = √

(2mW/h̄2),
while W = −KF (within vacuum) > 0 is the work function, and r = r1 = r2 is the
complex reflection amplitude corresponding to evanescent wavefunctions that propagate (i.e.,
decay) through vacuum towards a surface and are reflected back. Assuming that the potential
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Figure 1. Force per unit area between two semiinfinite metals as a function of their separation
L for different values 0.1, 1, 10 of the dimensionless work function W̃ = W/2EF. Also shown
schematically is the contribution e−2κF L ∝ F1 expected for one electron at the Fermi surface in
the cases W̃ = 0.1, 10.

V (z) is constant within the metals and within vacuum, and that it changes abruptly at the
vacuum–metal interface by an amount W + EF, the reflection amplitude may be calculated as
r = (iκ −kM)/(iκ +kM), where kM = √

[2m(W +EF)/h̄
2 −κ2] is the wavenumber within the

metal of the state corresponding to κ . We have verified that the 1D counterpart of equation (15),
obtained from (11) instead of (12) is consistent with equation (5.24) of [22] for the case of
square potential barriers. However, its simple structure was not identified previously, as the
momentum flux and scattering coefficients were calculated within the metals and not in the
vacuum gap between them.

In figure 1 we plot the force per unit area as a function of distance for different values of the
workfunction W . The force is attractive, seems to decay exponentially for large separations
and attains a finite value at zero separation. For large W the force is larger at small separation
and smaller at large separations as the energy decays very fast towards that of two isolated
semiinfinite metals. As could have been expected, the smaller the work function, the larger
the spatial range of the force. We might expect the decay to be dominated by those electrons
closest to the Fermi energy whose contribution becomes proportional to e−2κF L. Figure 1
includes two curves illustrating this behaviour for the cases of large and small W . The actual
decay of the force is slightly faster, more so for small W . This is due to the fact that not
only the contribution of each electron decays with increasing distance, but also the number of
electrons that contribute effectively to the force. Furthermore, the phase space available right
at the Fermi energy is null, due to the prefactor κ2

F − κ2 in equation (15), so the contributing
electrons have a slightly larger decay constant (i.e., smaller range) than those at the Fermi
level. This prefactor is absent in 1D calculations [22, 23].

In figure 2 we show the force for several distances as a function of W . For finite separation
distances the force is small for large W , for which the surfaces do not interact, and it is also
small for small W , for which the electrons tunnel easily regardless of the separation. Thus,
the magnitude of the force is largest at some intermediate value of W which increases as
L decreases. At contact, L = 0, there is no such extreme anymore and we obtain a linear
behaviour,

F(0)

A
= − k3

F

π2

(
EF

5
+

W

3

)
, (16)
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F (kF L = 0.2)
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Figure 2. Force between two metals as a function of the work function for several values of the
separation L̃ = 0, 0.1, 0.2 in units of k−1

F .

as can be shown by integrating equation (15) analytically. F(0) is the force that would
be required in order to break an infinite metal into two semiinfinite ones. Substitution of
typical values into equation (16) yields F(0)/A ∼ 100 GPa, several orders of magnitude
larger than the ultimate breaking strength of real materials, as our model fails to account
for dislocations whose motion within the metal would relax the stress, and for the growth
of fractures which are actually responsible for the failure of real metals. Real metals break
gradually, not simultaneously over the whole separation surface. Nevertheless, integrating
equation (15) over L we have obtained an analytical estimate of the surface energy of
metals in terms only of their Fermi energy and their work function. This turns out to
be surprisingly accurate [27] given our simplifying assumptions, namely, our use of an
independent free particle model, neglecting the crystalline structure, the electronic charge
and many-body corrections, as well as our use of a square potential barrier at the surface.
For example, we obtain a surface tension of γ ≈ 1223 erg cm−2 for Ag, 8% larger than
measured in the liquid state [28]. The discrepancy for other metals is typically larger; about
30–50%.

5. Thin films

Equation (15) may be employed to calculate the force between more complicated systems
simply by introducing the appropriate value of the reflection amplitude. For example, in
figure 3 we display the force between two free standing very thin metallic films as a function
of distance for a fixed Fermi energy, or more properly, a fixed electrochemical potential.
Note that for very thin films the force is identically zero, as there are no states at all
below the Fermi energy and therefore there are no available electrons to tunnel between
the films. For wider films the force is finite at small separations but becomes zero after a
finite separation. As the width is further increased, the force approaches that corresponding
to semiinfinite metals, although not monotonously; it actually oscillates between larger and
smaller values. This behaviour may be understood by considering the finite size effect on the
levels of the individual films and the interaction of levels within both films, yielding alternating
bonding and antibonding states which may be occupied only when they lie below the Fermi
level.
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Figure 3. Force between two films of widths d̃ = 0.5, 1, 2, 4, 8 (in units of k−1
F ) as a function of

the distance L between them. We took W = EF.

6. Conclusions

By calculating the mechanical properties carried by the electronic wavefunctions, we have
shown that the interchange of electrons between conductors produces a force that may be
calculated in terms of the electronic reflection amplitudes using formulae that are very closely
related to the Lifshitz formula for the usual Casimir force. We illustrated our formalism
by calculating the electronic pressure within a conductor and the force between semiinfinite
conductors and between thin films at very small distances, of the order of the Fermi wavelength.
These distances are extremely small, beyond the expected limit of validity of the usual Casimir
effect. Thus, we expect our results to be important to study the forces that act, for example,
between the tip and the substrate of a scanning tunnelling microscope (STM) or an atomic
force microscope [29, 30]. Related calculations in 1D have been employed to quantify the
quantum position and momentum uncertainties of the STM [22, 23] and to study the statistics
of electromechanical fluctuations in low-dimensional conductors [31]. We discussed how
our results may be employed to calculate the surface energy of conductors without having
to subtract total energies. Other applications which are currently under study include the
calculation of the force between impurities embedded within three- and one-dimensional
conductors. Our current calculations were performed only for free, independent electron
conductors. However, the main ingredients of our calculation are the reflection amplitudes
as a function of energy and parallel momentum and the electronic dispersion relation, so we
believe that within a quasi-particle approach, introducing Bloch’s momentum, and using the
appropriate band structures, our scattering approach might be generalized to more realistic
systems. We hope that the similarities we exhibited between the calculation of electronic forces
and of the Casimir effect may stimulate the Casimir community to employ their expertise to
further develop the field.
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